Commentary: A few comments have been posted about Meteorology.
Download: A text-only version is available for download.
Table of Contents
Book IV
Part 1
We have explained that the qualities that constitute the elements are four, and that their combinations determine the number of the elements to be four.
Two of the qualities, the hot and the cold, are active; two, the dry and the moist, passive. We can satisfy ourselves of this by looking at instances. In every case heat and cold determine, conjoin, and change things of the same kind and things of different kinds, moistening, drying, hardening, and softening them. Things dry and moist, on the other hand, both in isolation and when present together in the same body are the subjects of that determination and of the other affections enumerated. The account we give of the qualities when we define their character shows this too. Hot and cold we describe as active, for 'congregating' is essentially a species of 'being active': moist and dry are passive, for it is in virtue of its being acted upon in a certain way that a thing is said to be 'easy to determine' or 'difficult to determine'. So it is clear that some of the qualities are active and some passive.
Next we must describe the operations of the active qualities and the forms taken by the passive. First of all, true becoming, that is, natural change, is always the work of these powers and so is the corresponding natural destruction; and this becoming and this destruction are found in plants and animals and their parts. True natural becoming is a change introduced by these powers into the matter underlying a given thing when they are in a certain ratio to that matter, which is the passive qualities we have mentioned. When the hot and the cold are masters of the matter they generate a thing: if they are not, and the failure is partial, the object is imperfectly boiled or otherwise unconcocted. But the strictest general opposite of true becoming is putrefaction. All natural destruction is on the way to it, as are, for instance, growing old or growing dry. Putrescence is the end of all these things, that is of all natural objects, except such as are destroyed by violence: you can burn, for instance, flesh, bone, or anything else, but the natural course of their destruction ends in putrefaction. Hence things that putrefy begin by being moist and end by being dry. For the moist and the dry were their matter, and the operation of the active qualities caused the dry to be determined by the moist.
Destruction supervenes when the determined gets the better of the determining by the help of the environment (though in a special sense the word putrefaction is applied to partial destruction, when a thing's nature is perverted). Hence everything, except fire, is liable to putrefy; for earth, water, and air putrefy, being all of them matter relatively to fire. The definition of putrefaction is: the destruction of the peculiar and natural heat in any moist subject by external heat, that is, by the heat of the environment. So since lack of heat is the ground of this affection and everything in as far as it lacks heat is cold, both heat and cold will be the causes of putrefaction, which will be due indifferently to cold in the putrefying subject or to heat in the environment.
This explains why everything that putrefies grows drier and ends by becoming earth or dung. The subject's own heat departs and causes the natural moisture to evaporate with it, and then there is nothing left to draw in moisture, for it is a thing's peculiar heat that attracts moisture and draws it in. Again, putrefaction takes place less in cold that in hot seasons, for in winter the surrounding air and water contain but little heat and it has no power, but in summer there is more. Again, what is frozen does not putrefy, for its cold is greater that the heat of the air and so is not mastered, whereas what affects a thing does master it. Nor does that which is boiling or hot putrefy, for the heat in the air being less than that in the object does not prevail over it or set up any change. So too anything that is flowing or in motion is less apt to putrefy than a thing at rest, for the motion set up by the heat in the air is weaker than that pre-existing in the object, and so it causes no change. For the same reason a great quantity of a thing putrefies less readily than a little, for the greater quantity contains too much proper fire and cold for the corresponding qualities in the environment to get the better of. Hence, the sea putrefies quickly when broken up into parts, but not as a whole; and all other waters likewise. Animals too are generated in putrefying bodies, because the heat that has been secreted, being natural, organizes the particles secreted with it.
So much for the nature of becoming and of destruction.
Part 2
We must now describe the next kinds of processes which the qualities already mentioned set up in actually existing natural objects as matter.
Of these concoction is due to heat; its species are ripening, boiling, broiling. Inconcoction is due to cold and its species are rawness, imperfect boiling, imperfect broiling. (We must recognize that the things are not properly denoted by these words: the various classes of similar objects have no names universally applicable to them; consequently we must think of the species enumerated as being not what those words denote but something like it.) Let us say what each of them is. Concoction is a process in which the natural and proper heat of an object perfects the corresponding passive qualities, which are the proper matter of any given object. For when concoction has taken place we say that a thing has been perfected and has come to be itself. It is the proper heat of a thing that sets up this perfecting, though external influences may contribute in some degrees to its fulfilment. Baths, for instance, and other things of the kind contribute to the digestion of food, but the primary cause is the proper heat of the body. In some cases of concoction the end of the process is the nature of the thing-nature, that is, in the sense of the formal cause and essence. In other cases it leads to some presupposed state which is attained when the moisture has acquired certain properties or a certain magnitude in the process of being broiled or boiled or of putrefying, or however else it is being heated. This state is the end, for when it has been reached the thing has some use and we say that concoction has taken place. Must is an instance of this, and the matter in boils when it becomes purulent, and tears when they become rheum, and so with the rest.
Concoction ensues whenever the matter, the moisture, is mastered. For the matter is what is determined by the heat connatural to the object, and as long as the ratio between them exists in it a thing maintains its nature. Hence things like the liquid and solid excreta and ejecta in general are signs of health, and concoction is said to have taken place in them, for they show that the proper heat has got the better of the indeterminate matter.
Things that undergo a process of concoction necessarily become thicker and hotter, for the action of heat is to make things more compact, thicker, and drier.
This then is the nature of concoction: but inconcoction is an imperfect state due to lack of proper heat, that is, to cold. That of which the imperfect state is, is the corresponding passive qualities which are the natural matter of anything.
So much for the definition of concoction and inconcoction.
Part 3
Ripening is a sort of concoction; for we call it ripening when there is a concoction of the nutriment in fruit. And since concoction is a sort of perfecting, the process of ripening is perfect when the seeds in fruit are able to reproduce the fruit in which they are found; for in all other cases as well this is what we mean by 'perfect'. This is what 'ripening' means when the word is applied to fruit. However, many other things that have undergone concoction are said to be 'ripe', the general character of the process being the same, though the word is applied by an extension of meaning. The reason for this extension is, as we explained before, that the various modes in which natural heat and cold perfect the matter they determine have not special names appropriated to them. In the case of boils and phlegm, and the like, the process of ripening is the concoction of the moisture in them by their natural heat, for only that which gets the better of matter can determine it. So everything that ripens is condensed from a spirituous into a watery state, and from a watery into an earthy state, and in general from being rare becomes dense. In this process the nature of the thing that is ripening incorporates some of the matter in itself, and some it rejects. So much for the definition of ripening.
Rawness is its opposite and is therefore an imperfect concoction of the nutriment in the fruit, namely, of the undetermined moisture. Consequently a raw thing is either spirituous or watery or contains both spirit and water. Ripening being a kind of perfecting, rawness will be an imperfect state, and this state is due to a lack of natural heat and its disproportion to the moisture that is undergoing the process of ripening. (Nothing moist ripens without the admixture of some dry matter: water alone of liquids does not thicken.) This disproportion may be due either to defect of heat or to excess of the matter to be determined: hence the juice of raw things is thin, cold rather than hot, and unfit for food or drink. Rawness, like ripening, is used to denote a variety of states. Thus the liquid and solid excreta and catarrhs are called raw for the same reason, for in every case the word is applied to things because their heat has not got the mastery in them and compacted them. If we go further, brick is called raw and so is milk and many other things too when they are such as to admit of being changed and compacted by heat but have remained unaffected. Hence, while we speak of 'boiled' water, we cannot speak of raw water, since it does not thicken. We have now defined ripening and rawness and assigned their causes.
Boiling is, in general, a concoction by moist heat of the indeterminate matter contained in the moisture of the thing boiled, and the word is strictly applicable only to things boiled in the way of cooking. The indeterminate matter, as we said, will be either spirituous or watery. The cause of the concoction is the fire contained in the moisture; for what is cooked in a frying-pan is broiled: it is the heat outside that affects it and, as for the moisture in which it is contained, it dries this up and draws it into itself. But a thing that is being boiled behaves in the opposite way: the moisture contained in it is drawn out of it by the heat in the liquid outside. Hence boiled meats are drier than broiled; for, in boiling, things do not draw the moisture into themselves, since the external heat gets the better of the internal: if the internal heat had got the better it would have drawn the moisture to itself. Not every body admits of the process of boiling: if there is no moisture in it, it does not (for instance, stones), nor does it if there is moisture in it but the density of the body is too great for it-to-be mastered, as in the case of wood. But only those bodies can be boiled that contain moisture which can be acted on by the heat contained in the liquid outside. It is true that gold and wood and many other things are said to be 'boiled': but this is a stretch of the meaning of the word, though the kind of thing intended is the same, the reason for the usage being that the various cases have no names appropriated to them. Liquids too, like milk and must, are said to undergo a process of 'boiling' when the external fire that surrounds and heats them changes the savour in the liquid into a given form, the process being thus in a way like what we have called boiling.
The end of the things that undergo boiling, or indeed any form of concoction, is not always the same: some are meant to be eaten, some drunk, and some are intended for other uses; for instance dyes, too, are said to be 'boiled'.
All those things then admit of 'boiling' which can grow denser, smaller, or heavier; also those which do that with a part of themselves and with a part do the opposite, dividing in such a way that one portion thickens while the other grows thinner, like milk when it divides into whey and curd. Oil by itself is affected in none of these ways, and therefore cannot be said to admit of 'boiling'. Such then is the pfcies of concoction known as 'boiling', and the process is the same in an artificial and in a natural instrument, for the cause will be the same in every case.
Imperfect boiling is the form of inconcoction opposed to boiling. Now the opposite of boiling properly so called is an inconcoction of the undetermined matter in a body due to lack of heat in the surrounding liquid. (Lack of heat implies, as we have pointed out, the presence of cold.) The motion which causes imperfect boiling is different from that which causes boiling, for the heat which operates the concoction is driven out. The lack of heat is due either to the amount of cold in the liquid or to the quantity of moisture in the object undergoing the process of boiling. Where either of these conditions is realized the heat in the surrounding liquid is too great to have no effect at all, but too small to carry out the process of concocting uniformly and thoroughly. Hence things are harder when they are imperfectly boiled than when they are boiled, and the moisture in them more distinct from the solid parts. So much for the definition and causes of boiling and imperfect boiling.
Broiling is concoction by dry foreign heat. Hence if a man were to boil a thing but the change and concoction in it were due, not to the heat of the liquid but to that of the fire, the thing will have been broiled and not boiled when the process has been carried to completion: if the process has gone too far we use the word 'scorched' to describe it. If the process leaves the thing drier at the end the agent has been dry heat. Hence the outside is drier than the inside, the opposite being true of things boiled. Where the process is artificial, broiling is more difficult than boiling, for it is difficult to heat the inside and the outside uniformly, since the parts nearer to the fire are the first to get dry and consequently get more intensely dry. In this way the outer pores contract and the moisture in the thing cannot be secreted but is shut in by the closing of the pores. Now broiling and boiling are artificial processes, but the same general kind of thing, as we said, is found in nature too. The affections produced are similar though they lack a name; for art imitates nature. For instance, the concoction of food in the body is like boiling, for it takes place in a hot and moist medium and the agent is the heat of the body. So, too, certain forms of indigestion are like imperfect boiling. And it is not true that animals are generated in the concoction of food, as some say. Really they are generated in the excretion which putrefies in the lower belly, and they ascend afterwards. For concoction goes on in the upper belly but the excretion putrefies in the lower: the reason for this has been explained elsewhere.
We have seen that the opposite of boiling is imperfect boiling: now there is something correspondingly opposed to the species of concoction called broiling, but it is more difficult to find a name for it. It would be the kind of thing that would happen if there were imperfect broiling instead of broiling proper through lack of heat due to deficiency in the external fire or to the quantity of water in the thing undergoing the process. For then we should get too much heat for no effect to be produced, but too little for concoction to take place.
We have now explained concoction and inconcoction, ripening and rawness, boiling and broiling, and their opposites.
Part 4
We must now describe the forms taken by the passive qualities the moist and the dry. The elements of bodies, that is, the passive ones, are the moist and the dry; the bodies themselves are compounded of them and whichever predominates determines the nature of the body; thus some bodies partake more of the dry, others of the moist. All the forms to be described will exist either actually, or potentially and in their opposite: for instance, there is actual melting and on the other hand that which admits of being melted.
Since the moist is easily determined and the dry determined with difficulty, their relation to one another is like that of a dish and its condiments. The moist is what makes the dry determinable, and each serves as a sort of glue to the other-as Empedocles said in his poem on Nature, 'glueing meal together by means of water.' Thus the determined body involves them both. Of the elements earth is especially representative of the dry, water of the moist, and therefore all determinate bodies in our world involve earth and water. Every body shows the quality of that element which predominates in it. It is because earth and water are the material elements of all bodies that animals live in them alone and not in air or fire.
Of the qualities of bodies hardness and softness are those which must primarily belong to a determined thing, for anything made up of the dry and the moist is necessarily either hard or soft. Hard is that the surface of which does not yield into itself; soft that which does yield but not by interchange of place: water, for instance, is not soft, for its surface does not yield to pressure or sink in but there is an interchange of place. Those things are absolutely hard and soft which satisfy the definition absolutely, and those things relatively so which do so compared with another thing. Now relatively to one another hard and soft are indefinable, because it is a matter of degree, but since all the objects of sense are determined by reference to the faculty of sense it is clearly the relation to touch which determines that which is hard and soft absolutely, and touch is that which we use as a standard or mean. So we call that which exceeds it hard and that which falls short of it soft.
Part 5
A body determined by its own boundary must be either hard or soft; for it either yields or does not.
It must also be concrete: or it could not be so determined. So since everything that is determined and solid is either hard or soft and these qualities are due to concretion, all composite and determined bodies must involve concretion. Concretion therefore must be discussed.
Now there are two causes besides matter, the agent and the quality brought about, the agent being the efficient cause, the quality the formal cause. Hence concretion and disaggregation, drying and moistening, must have these two causes.
But since concretion is a form of drying let us speak of the latter first.
As we have explained, the agent operates by means of two qualities and the patient is acted on in virtue of two qualities: action takes place by means of heat or cold, and the quality is produced either by the presence or by the absence of heat or cold; but that which is acted upon is moist or dry or a compound of both. Water is the element characterized by the moist, earth that characterized by the dry, for these among the elements that admit the qualities moist and dry are passive. Therefore cold, too, being found in water and earth (both of which we recognize to be cold), must be reckoned rather as a passive quality. It is active only as contributing to destruction or incidentally in the manner described before; for cold is sometimes actually said to burn and to warm, but not in the same way as heat does, but by collecting and concentrating heat.
The subjects of drying are water and the various watery fluids and those bodies which contain water either foreign or connatural. By foreign I mean like the water in wool, by connatural, like that in milk. The watery fluids are wine, urine, whey, and in general those fluids which have no sediment or only a little, except where this absence of sediment is due to viscosity. For in some cases, in oil and pitch for instance, it is the viscosity which prevents any sediment from appearing.
It is always a process of heating or cooling that dries things, but the agent in both cases is heat, either internal or external. For even when things are dried by cooling, like a garment, where the moisture exists separately it is the internal heat that dries them. It carries off the moisture in the shape of vapour (if there is not too much of it), being itself driven out by the surrounding cold. So everything is dried, as we have said, by a process either of heating or cooling, but the agent is always heat, either internal or external, carrying off the moisture in vapour. By external heat I mean as where things are boiled: by internal where the heat breathes out and takes away and uses up its moisture. So much for drying.
Part 6
Liquefaction is, first, condensation into water; second, the melting of a solidified body. The first, condensation, is due to the cooling of vapour: what melting is will appear from the account of solidification.
Whatever solidifies is either water or a mixture of earth and water, and the agent is either dry heat or cold. Hence those of the bodies solidified by heat or cold which are soluble at all are dissolved by their opposites. Bodies solidified by the dry-hot are dissolved by water, which is the moist-cold, while bodies solidified by cold are dissolved by fire, which is hot. Some things seem to be solidified by water, e.g. boiled honey, but really it is not the water but the cold in the water which effects the solidification. Aqueous bodies are not solidified by fire: for it is fire that dissolves them, and the same cause in the same relation cannot have opposite effects upon the same thing. Again, water solidifies owing to the departure of heat; so it will clearly be dissolved by the entry into it of heat: cold, therefore, must be the agent in solidifying it.
Hence aqueous bodies do not thicken when they solidify; for thickening occurs when the moisture goes off and the dry matter comes together, but water is the only liquid that does not thicken. Those bodies that are made up of both earth and water are solidified both by fire and by cold and in either case are thickened. The operation of the two is in a way the same and in a way different. Heat acts by drawing off the moisture, and as the moisture goes off in vapour the dry matter thickens and collects. Cold acts by driving out the heat, which is accompanied by the moisture as this goes off in vapour with it. Bodies that are soft but not liquid do not thicken but solidify when the moisture leaves them, e.g. potter's clay in process of baking: but those mixed bodies that are liquid thicken besides solidifying, like milk. Those bodies which have first been thickened or hardened by cold often begin by becoming moist: thus potter's clay at first in the process of baking steams and grows softer, and is liable to distortion in the ovens for that reason.
Now of the bodies solidified by cold which are made up both of earth and water but in which the earth preponderates, those which solidify by the departure of heat melt by heat when it enters into them again; this is the case with frozen mud. But those which solidify by refrigeration, where all the moisture has gone off in vapour with the heat, like iron and horn, cannot be dissolved except by excessive heat, but they can be softened-though manufactured iron does melt, to the point of becoming fluid and then solidifying again. This is how steel is made. The dross sinks to the bottom and is purged away: when this has been done often and the metal is pure we have steel. The process is not repeated often because the purification of the metal involves great waste and loss of weight. But the iron that has less dross is the better iron. The stone pyrimachus, too, melts and forms into drops and becomes fluid; after having been in a fluid state it solidifies and becomes hard again. Millstones, too, melt and become fluid: when the fluid mass begins to solidify it is black but its consistency comes to be like that of lime. and earth, too
Of the bodies which are solidified by dry heat some are insoluble, others are dissolved by liquid. Pottery and some kinds of stone that are formed out of earth burnt up by fire, such as millstones, cannot be dissolved. Natron and salt are soluble by liquid, but not all liquid but only such as is cold. Hence water and any of its varieties melt them, but oil does not. For the opposite of the dry-hot is the cold-moist and what the one solidified the other will dissolve, and so opposites will have opposite effects.
Part 7
If a body contains more water than earth fire only thickens it: if it contains more earth fire solidifies it. Hence natron and salt and stone and potter's clay must contain more earth.
The nature of oil presents the greatest problem. If water preponderated in it, cold ought to solidify it; if earth preponderated, then fire ought to do so. Actually neither solidifies, but both thicken it. The reason is that it is full of air (hence it floats on the top of water, since air tends to rise). Cold thickens it by turning the air in it into water, for any mixture of oil and water is thicker than either. Fire and the lapse of time thicken and whiten it. The whitening follows on the evaporation of any water that may have been in it; the is due to the change of the air into water as the heat in the oil is dissipated. The effect in both cases is the same and the cause is the same, but the manner of its operation is different. Both heat and cold thicken it, but neither dries it (neither the sun nor cold dries oil), not only because it is glutinous but because it contains air. Its glutinous nature prevents it from giving off vapour and so fire does not dry it or boil it off.
Those bodies which are made up of earth and water may be classified according to the preponderance of either. There is a kind of wine, for instance, which both solidifies and thickens by boiling-I mean, must. All bodies of this kind lose their water as they That it is their water may be seen from the fact that the vapour from them condenses into water when collected. So wherever some sediment is left this is of the nature of earth. Some of these bodies, as we have said, are also thickened and dried by cold. For cold not only solidifies but also dries water, and thickens things by turning air into water. (Solidifying, as we have said, is a form of drying.) Now those things that are not thickened by cold, but solidified, belong rather to water, e.g.. wine, urine, vinegar, lye, whey. But those things that are thickened (not by evaporation due to fire) are made up either of earth or of water and air: honey of earth, while oil contains air. Milk and blood, too, are made up of both water and earth, though earth generally predominates in them. So, too, are the liquids out of which natron and salt are formed; and stones are also formed from some mixtures of this kind. Hence, if the whey has not been separated, it burns away if you boil it over a fire. But the earthy element in milk can also be coagulated by the help of fig-juice, if you boil it in a certain way as doctors do when they treat it with fig-juice, and this is how the whey and the cheese are commonly separated. Whey, once separated, does not thicken, as the milk did, but boils away like water. Sometimes, however, there is little or no cheese in milk, and such milk is not nutritive and is more like water. The case of blood is similar: cold dries and so solidifies it. Those kinds of blood that do not solidify, like that of the stag, belong rather to water and are very cold. Hence they contain no fibres: for the fibres are of earth and solid, and blood from which they have been removed does not solidify. This is because it cannot dry; for what remains is water, just as what remains of milk when cheese has been removed is water. The fact that diseased blood will not solidify is evidence of the same thing, for such blood is of the nature of serum and that is phlegm and water, the nature of the animal having failed to get the better of it and digest it.
Some of these bodies are soluble, e.g. natron, some insoluble, e.g. pottery: of the latter, some, like horn, can be softened by heat, others, like pottery and stone, cannot. The reason is that opposite causes have opposite effects: consequently, if solidification is due to two causes, the cold and the dry, solution must be due to the hot and the moist, that is, to fire and to water (these being opposites): water dissolving what was solidified by fire alone, fire what was solidified by cold alone. Consequently, if any things happen to be solidified by the action of both, these are least apt to be soluble. Such a case we find where things have been heated and are then solidified by cold. When the heat in leaving them has caused most of the moisture to evaporate, the cold so compacts these bodies together again as to leave no entrance even for moisture. Therefore heat does not dissolve them (for it only dissolves those bodies that are solidified by cold alone), nor does water (for it does not dissolve what cold solidifies, but only what is solidified by dry heat). But iron is melted by heat and solidified by cold. Wood consists of earth and air and is therefore combustible but cannot be melted or softened by heat. (For the same reason it floats in water-all except ebony. This does not, for other kinds of wood contain a preponderance of air, but in black ebony the air has escaped and so earth preponderates in it.) Pottery consists of earth alone because it solidified gradually in the process of drying. Water cannot get into it, for the pores were only large enough to admit of vapour escaping: and seeing that fire solidified it, that cannot dissolve it either.
So solidification and melting, their causes, and the kinds of subjects in which they occur have been described.
Part 8
All this makes it clear that bodies are formed by heat and cold and that these agents operate by thickening and solidifying. It is because these qualities fashion bodies that we find heat in all of them, and in some cold in so far as heat is absent. These qualities, then, are present as active, and the moist and the dry as passive, and consequently all four are found in mixed bodies. So water and earth are the constituents of homogeneous bodies both in plants and in animals and of metals such as gold, silver, and the rest-water and earth and their respective exhalations shut up in the compound bodies, as we have explained elsewhere.
All these mixed bodies are distinguished from one another, firstly by the qualities special to the various senses, that is, by their capacities of action. (For a thing is white, fragrant, sonant, sweet, hot, cold in virtue of a power of acting on sense). Secondly by other more characteristic affections which express their aptitude to be affected: I mean, for instance, the aptitude to melt or solidify or bend and so forth, all these qualities, like moist and dry, being passive. These are the qualities that differentiate bone, flesh, sinew, wood, bark, stone and all other homogeneous natural bodies. Let us begin by enumerating these qualities expressing the aptitude or inaptitude of a thing to be affected in a certain way. They are as follows: to be apt or inapt to solidify, melt, be softened by heat, be softened by water, bend, break, be comminuted, impressed, moulded, squeezed; to be tractile or non-tractile, malleable or non-malleable, to be fissile or non-fissile, apt or inapt to be cut; to be viscous or friable, compressible or incompressible, combustible or incombustible; to be apt or inapt to give off fumes. These affections differentiate most bodies from one another. Let us go on to explain the nature of each of them. We have already given a general account of that which is apt or inapt to solidify or to melt, but let us return to them again now. Of all the bodies that admit of solidification and hardening, some are brought into this state by heat, others by cold. Heat does this by drying up their moisture, cold by driving out their heat. Consequently some bodies are affected in this way by defect of moisture, some by defect of heat: watery bodies by defect of heat, earthy bodies of moisture. Now those bodies that are so affected by defect of moisture are dissolved by water, unless like pottery they have so contracted that their pores are too small for the particles of water to enter. All those bodies in which this is not the case are dissolved by water, e.g. natron, salt, dry mud. Those bodies that solidified through defect of heat are melted by heat, e.g. ice, lead, copper. So much for the bodies that admit of solidification and of melting, and those that do not admit of melting.
The bodies which do not admit of solidification are those which contain no aqueous moisture and are not watery, but in which heat and earth preponderate, like honey and must (for these are in a sort of state of effervescence), and those which do possess some water but have a preponderance of air, like oil and quicksilver, and all viscous substances such as pitch and birdlime.
Part 9
Those bodies admit of softening which are not (like ice) made up of water, but in which earth predominates. All their moisture must not have left them (as in the case of natron and salt), nor must the relation of dry to moist in them be incongruous (as in the case of pottery). They must be tractile (without admitting water) or malleable (without consisting of water), and the agent in softening them is fire. Such are iron and horn.
Both of bodies that can melt and of bodies that cannot, some do and some do not admit of softening in water. Copper, for instance, which can be melted, cannot be softened in water, whereas wool and earth can be softened in water, for they can be soaked. (It is true that though copper can be melted the agent in its case is not water, but some of the bodies that can be melted by water too such as natron and salt cannot be softened in water: for nothing is said to be so affected unless the water soaks into it and makes it softer.) Some things, on the other hand, such as wool and grain, can be softened by water though they cannot be melted. Any body that is to be softened by water must be of earth and must have its pores larger than the particles of water, and the pores themselves must be able to resist the action of water, whereas bodies that can be 'melted' by water must have pores throughout.
(Why is it that earth is both 'melted' and softened by moisture, while natron is 'melted' but not softened? Because natron is pervaded throughout by pores so that the parts are immediately divided by the water, but earth has also pores which do not connect and is therefore differently affected according as the water enters by one or the other set of pores.)
Some bodies can be bent or straightened, like the reed or the withy, some cannot, like pottery and stone. Those bodies are apt to be bent and straightened which can change from being curved to being straight and from being straight to being curved, and bending and straightening consist in the change or motion to the straight or to a curve, for a thing is said to be in process of being bent whether it is being made to assume a convex or a concave shape. So bending is defined as motion to the convex or the concave without a change of length. For if we added 'or to the straight', we should have a thing bent and straight at once, and it is impossible for that which is straight to be bent. And if all bending is a bending back or a bending down, the former being a change to the convex, the latter to the concave, a motion that leads to the straight cannot be called bending, but bending and straightening are two different things. These, then, are the things that can, and those that cannot be bent, and be straightened.
Some things can be both broken and comminuted, others admit only one or the other. Wood, for instance, can be broken but not comminuted, ice and stone can be comminuted but not broken, while pottery may either be comminuted or broken. The distinction is this: breaking is a division and separation into large parts, comminution into parts of any size, but there must be more of them than two. Now those solids that have many pores not communicating with one another are comminuible (for the limit to their subdivision is set by the pores), but those whose pores stretch continuously for a long way are breakable, while those which have pores of both kinds are both comminuible and breakable.
Some things, e.g. copper and wax, are impressible, others, e.g. pottery and water, are not. The process of being impressed is the sinking of a part of the surface of a thing in response to pressure or a blow, in general to contact. Such bodies are either soft, like wax, where part of the surface is depressed while the rest remains, or hard, like copper. Non-impressible bodies are either hard, like pottery (its surface does not give way and sink in), or liquid, like water (for though water does give way it is not in a part of it, for there is a reciprocal change of place of all its parts). Those impressibles that retain the shape impressed on them and are easily moulded by the hand are called 'plastic'; those that are not easily moulded, such as stone or wood, or are easily moulded but do not retain the shape impressed, like wool or a sponge, are not plastic. The last group are said to be 'squeezable'. Things are 'squeezable' when they can contract into themselves under pressure, their surface sinking in without being broken and without the parts interchanging position as happens in the case of water. (We speak of pressure when there is movement and the motor remains in contact with the thing moved, of impact when the movement is due to the local movement of the motor.) Those bodies are subject to squeezing which have empty pores-empty, that is, of the stuff of which the body itself consists-and that can sink upon the void spaces within them, or rather upon their pores. For sometimes the pores upon which a body sinks in are not empty (a wet sponge, for instance, has its pores full). But the pores, if full, must be full of something softer than the body itself which is to contract. Examples of things squeezable are the sponge, wax, flesh. Those things are not squeezable which cannot be made to contract upon their own pores by pressure, either because they have no pores or because their pores are full of something too hard. Thus iron, stone, water and all liquids are incapable of being squeezed.
Things are tractile when their surface can be made to elongate, for being drawn out is a movement of the surface, remaining unbroken, in the direction of the mover. Some things are tractile, e.g. hair, thongs, sinew, dough, birdlime, and some are not, e.g. water, stone. Some things are both tractile and squeezable, e.g. wool; in other cases the two qualities do not coincide; phlegm, for instance, is tractile but not squeezable, and a sponge squeezable but not tractile.
Some things are malleable, like copper. Some are not, like stone and wood. Things are malleable when their surface can be made to move (but only in part) both downwards and sideways with one and the same blow: when this is not possible a body is not malleable. All malleable bodies are impressible, but not all impressible bodies are malleable, e.g. wood, though on the whole the two go together. Of squeezable things some are malleable and some not: wax and mud are malleable, wool is not. Some things are fissile, e.g. wood, some are not, e.g. potter's clay. A thing is fissile when it is apt to divide in advance of the instrument dividing it, for a body is said to split when it divides to a further point than that to which the dividing instrument divides it and the act of division advances: which is not the case with cutting. Those bodies which cannot behave like this are non-fissile. Nothing soft is fissile (by soft I mean absolutely soft and not relatively: for iron itself may be relatively soft); nor are all hard things fissile, but only such as are neither liquid nor impressible nor comminuible. Such are the bodies that have the pores along which they cohere lengthwise and not crosswise.
Those hard or soft solids are apt to be cut which do not necessarily either split in advance of the instrument or break into minute fragments when they are being divided. Those that necessarily do so and liquids cannot be cut. Some things can be both split and cut, like wood, though generally it is lengthwise that a thing can be split and crosswise that it can be cut. For, a body being divided into many parts fin so far as its unity is made up of many lengths it is apt to be split, in so far as it is made up of many breadths it is apt to be cut.
A thing is viscous when, being moist or soft, it is tractile. Bodies owe this property to the interlocking of their parts when they are composed like chains, for then they can be drawn out to a great length and contracted again. Bodies that are not like this are friable. Bodies are compressible when they are squeezable and retain the shape they have been squeezed into; incompressible when they are either inapt to be squeezed at all or do not retain the shape they have been squeezed into.
Some bodies are combustible and some are not. Wood, wool, bone are combustible; stone, ice are not. Bodies are combustible when their pores are such as to admit fire and their longitudinal pores contain moisture weaker than fire. If they have no moisture, or if, as in ice or very green wood, the moisture is stronger than fire, they are not combustible.
Those bodies give off fumes which contain moisture, but in such a form that it does not go off separately in vapour when they are exposed to fire. For vapour is a moist secretion tending to the nature of air produced from a liquid by the agency of burning heat. Bodies that give off fumes give off secretions of the nature of air by the lapse of time: as they perish away they dry up or become earth. But the kind of secretion we are concerned with now differs from others in that it is not moist nor does it become wind (which is a continuous flow of air in a given direction). Fumes are common secretion of dry and moist together caused by the agency of burning heat. Hence they do not moisten things but rather colour them.
The fumes of a woody body are called smoke. (I mean to include bones and hair and everything of this kind in the same class. For there is no name common to all the objects that I mean, but, for all that, these things are all in the same class by analogy. Compare what Empedocles says: They are one and the same, hair and leaves and the thick wings of birds and scales that grow on stout limbs.) The fumes of fat are a sooty smoke and those of oily substances a greasy steam. Oil does not boil away or thicken by evaporation because it does not give off vapour but fumes. Water on the other hand does not give off fumes, but vapour. Sweet wine does give off fumes, for it contains fat and behaves like oil. It does not solidify under the influence of cold and it is apt to burn. Really it is not wine at all in spite of its name: for it does not taste like wine and consequently does not inebriate as ordinary wine does. It contains but little fumigable stuff and consequently is inflammable.
All bodies are combustible that dissolve into ashes, and all bodies do this that solidify under the influence either of heat or of both heat and cold; for we find that all these bodies are mastered by fire. Of stones the precious stone called carbuncle is least amenable to fire.
Of combustible bodies some are inflammable and some are not, and some of the former are reduced to coals. Those are called 'inflammable' which produce flame and those which do not are called 'non-inflammable'. Those fumigable bodies that are not liquid are inflammable, but pitch, oil, wax are inflammable in conjunction with other bodies rather than by themselves. Most inflammable are those bodies that give off smoke. Of bodies of this kind those that contain more earth than smoke are apt to be reduced to coals. Some bodies that can be melted are not inflammable, e.g. copper; and some bodies that cannot be melted are inflammable, e.g. wood; and some bodies can be melted and are also inflammable, e.g. frankincense. The reason is that wood has its moisture all together and this is continuous throughout and so it burns up: whereas copper has it in each part but not continuous, and insufficient in quantity to give rise to flame. In frankincense it is disposed in both of these ways. Fumigable bodies are inflammable when earth predominates in them and they are consequently such as to be unable to melt. These are inflammable because they are dry like fire. When this dry comes to be hot there is fire. This is why flame is burning smoke or dry exhalation. The fumes of wood are smoke, those of wax and frankincense and such-like, and pitch and whatever contains pitch or such-like are sooty smoke, while the fumes of oil and oily substances are a greasy steam; so are those of all substances which are not at all combustible by themselves because there is too little of the dry in them (the dry being the means by which the transition to fire is effected), but burn very readily in conjunction with something else. (For the fat is just the conjunction of the oily with the dry.) So those bodies that give off fumes, like oil and pitch, belong rather to the moist, but those that burn to the dry.
Part 10
Homogeneous bodies differ to touch-by these affections and differences, as we have said. They also differ in respect of their smell, taste, and colour.
By homogeneous bodies I mean, for instance, 'metals', gold, copper, silver, tin, iron, stone, and everything else of this kind and the bodies that are extracted from them; also the substances found in animals and plants, for instance, flesh, bones, sinew, skin, viscera, hair, fibres, veins (these are the elements of which the non-homogeneous bodies like the face, a hand, a foot, and everything of that kind are made up), and in plants, wood, bark, leaves, roots, and the rest like them.
The homogeneous bodies, it is true, are constituted by a different cause, but the matter of which they are composed is the dry and the moist, that is, water and earth (for these bodies exhibit those qualities most clearly). The agents are the hot and the cold, for they constitute and make concrete the homogeneous bodies out of earth and water as matter. Let us consider, then, which of the homogeneous bodies are made of earth and which of water, and which of both.
Of organized bodies some are liquid, some soft, some hard. The soft and the hard are constituted by a process of solidification, as we have already explained.
Those liquids that go off in vapour are made of water, those that do not are either of the nature of earth, or a mixture either of earth and water, like milk, or of earth and air, like wood, or of water and air, like oil. Those liquids which are thickened by heat are a mixture. (Wine is a liquid which raises a difficulty: for it is both liable to evaporation and it also thickens; for instance new wine does. The reason is that the word 'wine' is ambiguous and different 'wines' behave in different ways. New wine is more earthy than old, and for this reason it is more apt to be thickened by heat and less apt to be congealed by cold. For it contains much heat and a great proportion of earth, as in Arcadia, where it is so dried up in its skins by the smoke that you scrape it to drink. If all wine has some sediment in it then it will belong to earth or to water according to the quantity of the sediment it possesses.) The liquids that are thickened by cold are of the nature of earth; those that are thickened either by heat or by cold consist of more than one element, like oil and honey, and 'sweet wine'.
Of solid bodies those that have been solidified by cold are of water, e.g. ice, snow, hail, hoar-frost. Those solidified by heat are of earth, e.g. pottery, cheese, natron, salt. Some bodies are solidified by both heat and cold. Of this kind are those solidified by refrigeration, that is by the privation both of heat and of the moisture which departs with the heat. For salt and the bodies that are purely of earth solidify by the privation of moisture only, ice by that of heat only, these bodies by that of both. So both the active qualities and both kinds of matter were involved in the process. Of these bodies those from which all the moisture has gone are all of them of earth, like pottery or amber. (For amber, also, and the bodies called 'tears' are formed by refrigeration, like myrrh, frankincense, gum. Amber, too, appears to belong to this class of things: the animals enclosed in it show that it is formed by solidification. The heat is driven out of it by the cold of the river and causes the moisture to evaporate with it, as in the case of honey when it has been heated and is immersed in water.) Some of these bodies cannot be melted or softened; for instance, amber and certain stones, e.g. the stalactites in caves. (For these stalactites, too, are formed in the same way: the agent is not fire, but cold which drives out the heat, which, as it leaves the body, draws out the moisture with it: in the other class of bodies the agent is external fire.) In those from which the moisture has not wholly gone earth still preponderates, but they admit of softening by heat, e.g. iron and horn.
Now since we must include among 'meltables' those bodies which are melted by fire, these contain some water: indeed some of them, like wax, are common to earth and water alike. But those that are melted by water are of earth. Those that are not melted either by fire or water are of earth, or of earth and water.
Since, then, all bodies are either liquid or solid, and since the things that display the affections we have enumerated belong to these two classes and there is nothing intermediate, it follows that we have given a complete account of the criteria for distinguishing whether a body consists of earth or of water or of more elements than one, and whether fire was the agent in its formation, or cold, or both.
Gold, then, and silver and copper and tin and lead and glass and many nameless stone are of water: for they are all melted by heat. Of water, too, are some wines and urine and vinegar and lye and whey and serum: for they are all congealed by cold. In iron, horn, nails, bones, sinews, wood, hair, leaves, bark, earth preponderates. So, too, in amber, myrrh, frankincense, and all the substances called 'tears', and stalactites, and fruits, such as leguminous plants and corn. For things of this kind are, to a greater or less degree, of earth. For of all these bodies some admit of softening by heat, the rest give off fumes and are formed by refrigeration. So again in natron, salt, and those kinds of stones that are not formed by refrigeration and cannot be melted. Blood, on the other hand, and semen, are made up of earth and water and air. If the blood contains fibres, earth preponderates in it: consequently its solidifies by refrigeration and is melted by liquids; if not, it is of water and therefore does not solidify. Semen solidifies by refrigeration, its moisture leaving it together with its heat.
Part 11
We must investigate in the light of the results we have arrived at what solid or liquid bodies are hot and what cold.
Bodies consisting of water are commonly cold, unless (like lye, urine, wine) they contain foreign heat. Bodies consisting of earth, on the other hand, are commonly hot because heat was active in forming them: for instance lime and ashes.
We must recognize that cold is in a sense the matter of bodies. For the dry and the moist are matter (being passive) and earth and water are the elements that primarily embody them, and they are characterized by cold. Consequently cold must predominate in every body that consists of one or other of the elements simply, unless such a body contains foreign heat as water does when it boils or when it has been strained through ashes. This latter, too, has acquired heat from the ashes, for everything that has been burnt contains more or less heat. This explains the generation of animals in putrefying bodies: the putrefying body contains the heat which destroyed its proper heat.
Bodies made up of earth and water are hot, for most of them derive their existence from concoction and heat, though some, like the waste products of the body, are products of putrefaction. Thus blood, semen, marrow, figjuice, and all things of the kinds are hot as long as they are in their natural state, but when they perish and fall away from that state they are so no longer. For what is left of them is their matter and that is earth and water. Hence both views are held about them, some people maintaining them to be cold and others to be warm; for they are observed to be hot when they are in their natural state, but to solidify when they have fallen away from it. That, then, is the case of mixed bodies. However, the distinction we laid down holds good: if its matter is predominantly water a body is cold (water being the complete opposite of fire), but if earth or air it tends to be warm.
It sometimes happens that the coldest bodies can be raised to the highest temperature by foreign heat; for the most solid and the hardest bodies are coldest when deprived of heat and most burning after exposure to fire: thus water is more burning than smoke and stone than water.
Part 12
Having explained all this we must describe the nature of flesh, bone, and the other homogeneous bodies severally.
Our account of the formation of the homogeneous bodies has given us the elements out of which they are compounded and the classes into which they fall, and has made it clear to which class each of those bodies belongs. The homogeneous bodies are made up of the elements, and all the works of nature in turn of the homogeneous bodies as matter. All the homogeneous bodies consist of the elements described, as matter, but their essential nature is determined by their definition. This fact is always clearer in the case of the later products of those, in fact, that are instruments, as it were, and have an end: it is clearer, for instance, that a dead man is a man only in name. And so the hand of a dead man, too, will in the same way be a hand in name only, just as stone flutes might still be called flutes: for these members, too, are instruments of a kind. But in the case of flesh and bone the fact is not so clear to see, and in that of fire and water even less. For the end is least obvious there where matter predominates most. If you take the extremes, matter is pure matter and the essence is pure definition; but the bodies intermediate between the two are matter or definition in proportion as they are near to either. For each of those elements has an end and is not water or fire in any and every condition of itself, just as flesh is not flesh nor viscera viscera, and the same is true in a higher degree with face and hand. What a thing is always determined by its function: a thing really is itself when it can perform its function; an eye, for instance, when it can see. When a thing cannot do so it is that thing only in name, like a dead eye or one made of stone, just as a wooden saw is no more a saw than one in a picture. The same, then, is true of flesh, except that its function is less clear than that of the tongue. So, too, with fire; but its function is perhaps even harder to specify by physical inquiry than that of flesh. The parts of plants, and inanimate bodies like copper and silver, are in the same case. They all are what they are in virtue of a certain power of action or passion-just like flesh and sinew. But we cannot state their form accurately, and so it is not easy to tell when they are really there and when they are not unless the body is thoroughly corrupted and its shape only remains. So ancient corpses suddenly become ashes in the grave and very old fruit preserves its shape only but not its taste: so, too, with the solids that form from milk.
Now heat and cold and the motions they set up as the bodies are solidified by the hot and the cold are sufficient to form all such parts as are the homogeneous bodies, flesh, bone, hair, sinew, and the rest. For they are all of them differentiated by the various qualities enumerated above, tension, tractility, comminuibility, hardness, softness, and the rest of them: all of which are derived from the hot and the cold and the mixture of their motions. But no one would go as far as to consider them sufficient in the case of the non-homogeneous parts (like the head, the hand, or the foot) which these homogeneous parts go to make up. Cold and heat and their motion would be admitted to account for the formation of copper or silver, but not for that of a saw, a bowl, or a box. So here, save that in the examples given the cause is art, but in the nonhomogeneous bodies nature or some other cause.
Since, then, we know to what element each of the homogeneous bodies belongs, we must now find the definition of each of them, the answer, that is, to the question, 'what is' flesh, semen, and the rest? For we know the cause of a thing and its definition when we know the material or the formal or, better, both the material and the formal conditions of its generation and destruction, and the efficient cause of it.
After the homogeneous bodies have been explained we must consider the non-homogeneous too, and lastly the bodies made up of these, such as man, plants, and the rest.THE END